

Original Research Article

Skin Sensitivity of Various Pollen Allergens in Bronchial Asthma Patients in Desert and Non-Desert Area of Rajasthan

Jitendra Jalutharia^{1*}, Mahesh Mishra², V.K. Jain³

¹Assistant Professor, Department of Respiratory Medicine, Mahatma Gandhi Medical College, Jaipur, Rajasthan, India

²Prof. & Head, Department of Respiratory Medicine, Mahatma Gandhi Hospital, Jaipur, Rajasthan, India

³Professor, Department of Respiratory Medicine, Mahatma Gandhi Hospital, Jaipur, Rajasthan, India

Received: 22-12-2020 / Revised: 23-01-2021 / Accepted: 20-02-2021

Abstract

Aim: This study was conducted to know the pattern of skin prick tests to various pollen allergens causing bronchial asthma in Rajasthan. **Material and methods:** A Total of 100 adult participants with the age group of 16 to 55 years were enrolled for this study who were diagnosed as Bronchial Asthma based on GINA Guidelines in Department of Respiratory Medicine, Mahatma Gandhi Medical College and Hospital, Jaipur Rajasthan. **Results:** In present study 84% cases are positive with pollen allergen and profile of various pollen allergens with skin test positivity from ascending to descending order are *ProsopisJuliflora* 45% followed by *PennisitumTyphoides* 43%, *Amaranthus Spinosus* 40%, *Suaeda Fruticosa* 37%, *Argemone Maxicana* 36%, *Holoptetia Integifolia* 35%, *Parthenium Hysterophorus* 32%, *Ricinus Communis* 31%, *Imperata Cylindrica* 30%, *Casia Siamea*, *Gynandropsis Gynandra* and *Brassic Campestris* 28% *CydonDactylon* 27% *Azudurirechtha Indica* 25%, *Albizia Lebbek*, *ChemopodiumAlbum* 21% each. **Conclusion:** The common allergen in both desert and non-desert area are *ProsopisJuliflora*. The conclusion of this study will definitely help clinicians in not only to know the avoidance of allergen but also in minimizing the number of allergens for skin prick test in patients of asthma residing in Rajasthan.

Keywords: bronchial asthma, pollen allergen, skin prick tests.

This is an Open Access article that uses a fund-ing model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>) and the Budapest Open Access Initiative (<http://www.budapestopenaccessinitiative.org/read>), which permit unrestricted use, distribution, and reproduction in any medium, provided original work is properly credited.

Introduction

Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath. Chest tightness and cough that vary over time and in intensity, together with variable expiratory airflow limitation. [1] It is chronic inflammatory disease of the airways that affects people of all ages which imposes a substantial burden on patients, their families, and the community. Asthma is one of the common and an important cause for long term non-communicable diseases (NCDs) and also causes a substantial disability and death worldwide. [2] Aero allergens are important in pathogenesis of bronchial asthma. Several allergens such as pollens, dusts, fungi and insects are now being recognized as important trigger factors. Allergens are present in environment both outdoor as well as indoor. The detailed information on diurnal, annual, seasonal variation of allergens is an essential pre-requisite for effective diagnosis and therapy. Skin prick test provide a rapid and sensitive means of presence of allergen specific IgE mediated antibodies. [3-6] When minimal amount of standardized allergen is introduced into the epidermis or dermis, it produces a wheal and flare reaction which can be quantified. Many allergens can be simultaneously tested by this method as the reaction is localized to the area of testing.

The problem of allergic disorder varies from place to place due to

variable environmental condition and presence of various aeroallergens. In routine practice skin allergy test is done by clinician with large number of allergens due to paucity of literature regarding knowledge of regional allergenic environmental allergens. In view of these facts, this study was conducted to know the pattern of skin prick tests to various pollen allergens causing bronchial asthma in Rajasthan.

Material & Methods

A Total of 100 adult participants with the age group of 16 to 55 years were enrolled for this study who were diagnosed as Bronchial Asthma based on GINA Guidelines in Department of Respiratory Medicine, Mahatma Gandhi Medical College and Hospital, Jaipur Rajasthan from December 2015 to November 2016.

All the individuals underwent thorough evaluation of medical history and all needed investigation like TLC, DLC, Chest X-ray, spirometry and PEFR were done. All the parameters and clinical details were recorded in a well prepared Performa. All the patients were evaluated using SPT were done. Data analyzed done by using SPSS version 20 and primer software and the qualitatively data were expressed in proportion and percentages and expressed as mean and standard deviation.

Results

In our study, out of 100 cases of bronchial asthma, 59 patients are males and 41 are females and majority of patients (92%) are below 45 years of age group. 68% cases are from urban area and 32% cases are from rural residence of Rajasthan. Most of bronchial asthma patients (59%) were having night exacerbation, followed by early morning 24% and minimum in day 6% and only 11% showed no diurnal variation of symptoms. Atopy history was present in 54% patients and 53% patients were having both perennial and seasonal exacerbation followed by 28% in seasonal and 19% in perennial pattern.

*Correspondence

Dr. Jitendra Jalutharia

Assistant Professor, Department of Respiratory Medicine,
Mahatma Gandhi Medical College, Jaipur, Rajasthan, India.

E-mail:drjiten26@gmail.com

Table 1: shows maximum number of patients in between age of 16 to 25 years followed by 26 to 35 years.

Table 2: Majority of cases 76(37.44%) presented during the period of August to October followed by 56(27.59%) cases in February to April, 38 (18.72%) cases in November to January and 33 (16.26%) cases in May to July months.

Table 3: We include 60% patients from non-desert area while 40% are from desert area.

Table 4: showing that maximum number of cases (77%) of bronchial asthma is associated with rhinitis followed by spring catarrh.

Table 5: Significant skin prick reaction was positive in 89% of patients. In present study 84% cases are positive with pollen allergen and profile of various pollen allergens with skin test positivity from ascending to descending order are *Prosopis Juliflora* 45% followed

by *Pennisitum Typhoides* 43%, *Amaranthus Spinosa* 40%, *Suaeda Fruticosa* 37%, *Argemone Maxicana* 36%, *Holoptelia Integrifolia* 35%, *Parthenium Hysterophorus* 32%, *Ricinus Communis* 31%, *Imperata Cylindrica* 30%, *Casia Siamea*, *Gynandropsis Gynandra* and *Brassic Campestris* 28% *Cydonia Dactylon* 27% *Azadirachta Indica* 25%, *Albizia Lebbek*, *Chemopodium album* 21% each.

From desert area of Rajasthan, most common pollen allergens are *Amaranthus Spinosa* 47.5%, followed by *Cynodon Dactylon* 42.5%, *Suaeda Fruticosa* 42.5%, *Prosopis Juliflora*, *Argemone Mexicana* 40%, *Pennisitum Typhoides* 37.5%, *Holoptelia Integrifolia* 32.5% while in non-desert area *Prosopis Juliflora* 48.3% is most common pollen followed by *Pennisitum Typhoides* 46.7%, *Holoptelia Integrifolia* 36.7%, *Argemone Mexicana*, *Brassica Campestris*, *Ricinus Communis*, *Suaeda Fruticosa* 33.3%.

Table 1:Age profile of Bronchial Asthma cases (n=100)

Age groups (years)	Number of Persons	%
16-25	38	38
26-35	31	31
36-45	23	23
46-55	8	8

Table2:Monthly profile of Bronchial Asthma cases (n=203)

Manifesting season	Number of persons	%
February to April	56	27.59
May to July	33	16.26
August to October	76	37.44
November to January	38	18.72

Table 3:Profile of Non-desert and Desert area (n=100)

Habituation	Number of persons	%
Non-desert	60	60
Desert	40	40

Table 4:Profile of associated disease and bronchial asthma cases (n=100)

Associations	No. of cases	%
Bronchial Asthma	20	20
Bronchial Asthma with Rhinitis	77	77
Bronchial Asthma with Spring catarrh	36	36
Bronchial Asthma with skin/Ear disease	6	6

Table 5:Profile of allergens reactivity of allergen with skin prick test (SPT) in Bronchial Asthma cases

Score Positiveness	Cases (n=100)	%
Negative	11	11
Significant positive (2+ to 4+)	89	89

Discussion

This study includes 100 diagnosed patient of bronchial asthma between 15 to 55 years of age and mostly male. Highest numbers of asthma cases (92%) are in below 45 year of age and more than 3/4th of cases were having rhinitis associated with bronchial asthma followed by 1/3rd are also having spring catarrh. Mathuret al. [7], Demoly et al. [8], Guerra et al. [9] Oneair [10], and Riniar [11] studies also report higher association of rhinitis ranging from 70-80%. About 2/3rd of asthma cases are showing bimodal peak during month of August to October and February to April. This could be possibly due to with change of season, a high pollen count in environment as reported in the literature. [12-16] Aeroallergen is most important trigger factor in pathophysiology of allergic disease. They stimulate various cells like eosinophil, mast cell, neutrophils etc which lead to production of several cytokines and interleukins followed by symptoms of naso-bronchial allergy, conjunctivitis, bronchial asthma, eczema/allergic dermatitis, urticarial, angioedema. There are several types of pollen allergen present in our environment which identification and avoidance is very important for disease prevention and treatment. Skin prick test is "in vivo" important test for the identification of different types of pollen allergens. This study shows 89% of cases has definite skin test positivity (2+ to 4+) while 11% had negative reaction to SPT. Similar result were found in study

by Prasad et al [17]. In present study maximum number of cases 84% are positive with pollen allergen followed by insects 71%, dust 52%, 44% house dust mite, and 38% fungal allergen. In India, first atmospheric survey for airborne particles was done in Calcutta by Anningham in 1873. [18] The work on Pollen allergy was initiated by Shivpuri [19] in Delhi in 1950, Later, Kashiwal [20] and colleagues reported important pollen allergens of Jaipur. In our study the dominant allergen showing maximum significant (84%) positivity in asthma cases is pollen. Other studies by Roy et al. [21] from Varanasi (81.66%), Subhakar et al. [22] from Andhra Pradesh (86.11%) reported similar positivity, while lower results were shown in Western studies by Handrick et al. [23], Michela et al. [24] (55.3%) and from India lower positivity seen by Matah et al. [25] (70%), Prasad et al. [17] from Lucknow (7.8%), Kumar et al. [26] from Delhi pollens (weed 21.79; tree pollen 15.14%; grass 7.73%). The reason for high positivity is, in our study of we took various group of allergens in comparison to other study reported and could be possibly due to proper and judicious selection of patients highly suspecting clinical allergic etiology before considering them for SPT. Most common pollen allergen, in our study is *Prosopis Juliflora* 45%, followed by *Pennisitum Typhoides* 43%, *amaranthus Spinosa* 40%, *Suaeda Fruticosa* 37%, *Argemone Mexicana* 36%, *Holoptelia Tegifolia* 35%, *Parthenium Hysterophorus* 32%, *Ricinus Communis*

Communis 31%. Shivpuri and Prakash [27] in 1967 observed *Prosopis* *Uuliflora* with positive reaction of its pollen in 12% of asthma patients while Kasliwalet al.[28] from Jaipur reported pollens of *Amaranthus*, *Chenopodium*, *Cnadon*, *Holoptelia* and *Prosopis* as important allergens in patients having respiratory allergies. Agnihotri and Singh[29] in 1971 from Lucknow found pollen extract of *Holoptelia* and *Prosopis* showed skin reactivity in asthma patients while Jain et al.[30] in 1988 reported very high (61.7%) reaction of *Prosopis* pollens in cases of nasobronchial disease and as a dominant pollen allergen in desert part of Rajasthan. In 2000, All India Coordinated Project on aero-allergens and human health [31], reported the dominant pollen types identified from Northern India were *Holoptelia*, *Poaceae*, *Asteraceae*, *Prosopisjuliflora*, *Ricinus communis*, *Morus*, *Mallotus*, *Alnus*, *Argemone*, *Amaranthus* and *Chenopodium*. Arora A and Jain V K[12] in 2001 in anaeropalyngological survey from Bikaner reported major pollen as *Poaceae* (26.20%) followed by *Amaranthus-Chenopod* (11.50%) and *Cyperaceae* (10.30%). In Jaipur, a non-desert area of Rajasthan Maheesh et al.[32] found *Prosopis Juliflora*(16%) most common pollen followed by *Ricinus Communis*(15%), *Holoptelia Integriflora* (14%), *Amaranthus Spinosa*(13%), *Cassia Simiae* (1220), *Cassia Occidentalis* (11%), *Albizia Lebek*(10%), *Cynodon Dactylon* (9%), *Xanthium Stumium*, *Eucalyptus,Morus*(7%) which support our study.

Jain et al.[30] reported pollen allergy with *Prosopisj-uliflora* (61.7%), *Suaedafruticosa*(56.38%), *Albizia*(50.53%), *Zeamays*(47.349%) , *Amaranthus* *Spinosa* and *Lawsonia* (50%) in patients of nasobronchial allergy in desert area. Jain [33] also reported that in desert area of Rajasthan most common allergenic pollen are of *Prosopisjuliflora*, *Suaeda*, *Albezia*, *Lawsonia*, *Cynodon*, *Cheno-podium*, *Penisitum* and *Argemone* in patients of respiratory allergy. Compared to our study most common pollen allergens in Desert area was different but still *Amaranthus* pollen was sensitive in approx. 50% patient of bronchial asthma as allergen. In our study the commonest pollen allergen causing nasobronchial allergy are *Prosopis Juliflora*, followed by *Penisitum Typhoides*, *Amaranthus Spinosa*, *Suaeda Ruicosa*, *Argemone Mexicana*, *Holoptelia Integrifolia*, *Parthenium Hysterophorus*, *Kicimus Communis*, *Imperata Cylindrica*, *Cassia Siamea*, *Gynandropis Gynandra*, *Brassica Campestris*, *Cynodon Dactylon*, *Azadarichetha Indica*, *Chenopodium Album* and *Albizia Lebek* which have been reported in previous studies done in Desert and non-desert areas of Rajasthan and in studies from other part of Northern India.

Conclusion

This study is a tertiary care teaching hospital based prospective observational descriptive study of allergen sensitivity of pollen aeroallergens conducted on bronchial asthma patients. The common allergen in both desert and non-desert area are *Prosopisjuliflora*. The conclusion of this study will definitely help clinicians in not only to know the avoidance of allergen but also in minimizing the number of allergens for skin prick test in patients of asthma residing in Rajasthan.

References

1. Global initiative for Asthma (GINA), 2016. Available from: <http://www.ginasthma.com>
2. World Health Organization. Global Asthma Network the Global Asthma Report [Internet], 2018. Available from: www.globalasthmanetwork.org
3. Kay A.B. Principle and practice of diagnosis and treatment of allergic disease. Text book of allergy and allergic diseases vol.2 Ed. Kay A.B. Blackwell Science Ltd. 1997;2:1271.
4. Kathuria PC. Methods of allergy tests and role of immunotherapy in allergic 9. Diseases, Recent advances, JIMA college of general practitioners, 1982; 1:9.
5. Harolds, Nelson, M.D. Col M.C.U.S.A. Diagnostic procedures in allergy. 10. Allergy skin testing annuals of allergy. 1983;51:411.
6. Pepys, J. Skin testing. Br J Hospital Med, 1975;14:412.
7. Mathur U, SinghV, RamchandaniG. Clinical profile of asthma in Rajasthan. Lung India. 1993;11(4):135.
8. Demoly P, Bousquet J. the relation between asthma and allergic rhinitis. Lancet. 2006;368:711-3
9. Guerra S, Sherrill DL, Martinez FD et al. Rhinitis as an independent risk factor for adult onset asthma. J Allergy Clin Immunol. 2002;109:419-25.
10. Navarro A, Valero A, Julia B, Quirce S. Coexistence of asthma and allergic rhinitis in adult patient attending allergy clinics. ONEAIR study. J. Investig Allergol Clin Immunol. 2008.
11. AbisheganandJ, Sin Fai LamKN,LimTK. A profile of acute asthma patients presenting to emergency room. Singapore med J. 1996; 37:252-254.
12. Arora A, Jain VK. Aeropalyngological survey at Bikaner. Indian J. aerobiol.2001; 14(1&2):28-32.
13. Singh AB, Babu CR. Pollen types in the atmosphere of Dehli. Phytomorphology.1980; 30:180-189.
14. Singh AB, Babu CR. Studies on pollen allergy in Delhi. Diurnal 1dicity. Ann. Allergy. 1980; 35:311-317.
15. Singh AB, BabuCR. Variation in the pollen spectra of Delhi region, India. Grana. 1981; 20:191-195.
16. Singh AB, Babu CR. Survey of atmospheric pollen allergens in Delhi-Seasonal Periodicity. Ann Allergy. 1982; 48:115-122.
17. Prasad R, VermaSK, DuaR, KantS, KushwahaRAS, AgarwalSP. A study of skin sensitivity to various allergens by skin prick test in patients of nasobronchial allergy. Lung India 2009;26(3):70.
18. Singh AB, Malik P. Pollen aerobiology and allergy:an integrated approach. Ind. J Aerobiol. 1992; 5(1&2):1-9.
19. Jain VK, Arora A. Clinical Allergy principle, practice and management: Aeroallergens in clinical practice of respiratory allergy, 2007, 13-16p.
20. Kasliwal RM, Solomon SK. Correlation of respiratory allergy cases with pollen concentration and meteorological factors. J. ass. Atmosphere pollen Physics (India). 1958; 6:180-195.
21. Roy DC, Agarwal SK. Gupta DK. Air borne allergens around Varanasi. Indian J. All. App. Immunol. 1991; 5:27.
22. Subhakar K, Kotilingam K, Raju BVLN. Profile of skin test in allergic rhinitis. Ind. J. All. And App. Immunol. 1991; 5:11-15.
23. Hendrick DJ, Davies RJ, D'Souza MF, Pepys J. Thorax, -8, An analysis of skin prick test reactions in 656 asthmatic patients, 1975.
24. Michelsilvesto, Susanna oddera, Giovanni A Rossi, Paolo Crimi. Sensitivity to airborne allergen in children with respiratory symptoms. Annals of allergy.
25. Matan SC, Samoriq JK, Sudhir Kumar, Prasad R. Profile of respiratory allergy around Varanasi. Indian J. All. Appl. Immunol. 1993; 7:40.
26. Kumar R, Sharan N, Kumar M, Bisht I, Gaur SN. Pattern of skin sensitivity to various aeroallergens in patients of bronchial asthma and/or allergic rhinitis in India. Indian J Allergy Asthma Immunol. 2012;26:6-72.
27. Shivpuri DN,Prakash D. A study in allergy to *prosopisjuliflora*(kabuliLoekar). Ann allergy 1967; 25:643.648.
28. Kasliwal RM, Gupta KD, Singhvi LM, Sogani, IC. Evaluation of results of specific hyposensitization therapy in case of respiratory allergies treated in SMS hospital, Jaipur. Ind. J. Chest Dis. 1959; 1:1728.
29. AgnihotriMS, Singh AB. Observation in pollinosis in Lucknow with special reference offending factors. Aspects Allergy Appl. Immunol. 1971; 5:135-141.

30. Jain VK, Om Prakash, Sharma. Role of prosopisjuliflora in patients of nasobronchial allergy in Bikaner. Indian J. All. App. Immunol,1988;2(2):1.
31. Anonymous all India coordinated project on aeroallergen and human health. Report. Ministry of Environment and Forests, New Delhi,2000.
32. Goyal M, Parikh R, Goyal N. identification of common allergens by skin prick test associated With common respiratory allergic disorders in the City of Jaipur, Rajasthan. Indian J Allergy Asthma Immunol. 2010;24(1):1-6.
33. Jain VK, Kalra A, Sharma VK. Pollen allergy in patients of bronchial asthma residing in that desert of Rajasthan. Ind. J. Allergy App. Immunol. Abst no. 6, 1989.

Conflict of Interest: Nil

Source of support:Nil